Discrete Concavity and the Half-Plane Property

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete Concavity and the Half-Plane Property

Murota et al. have recently developed a theory of discrete convex analysis which concerns M -convex and L-convex functions on jump systems. We introduce here a family of M -concave functions arising naturally from polynomials (over the field of Puiseux series) with prescribed non-vanishing properties. This family contains several of the most studied M -concave functions in the literature. We al...

متن کامل

A criterion for the half-plane property

We establish a convenient necessary and sufficient condition for a multiaffine real polynomial to be stable, and use it to verify that the half-plane property holds for seven small matroids that resisted the efforts of Choe, Oxley, Sokal, and Wagner [5]. In recent years, matroid theory has found connections with certain analytic properties of real multivariate polynomials. These properties are ...

متن کامل

Log-concavity, ultra-log-concavity, and a maximum entropy property of discrete compound Poisson measures

Sufficient conditions are developed, under which the compound Poisson distribution has maximal entropy within a natural class of probability measures on the nonnegative integers. Recently, one of the authors [O. Johnson, Stoch. Proc. Appl., 2007] used a semigroup approach to show that the Poisson has maximal entropy among all ultra-log-concave distributions with fixed mean. We show via a non-tr...

متن کامل

On the Pre-bézout Property of Wiener Algebras on the Disc and the Half-plane

Let D denote the open unit disk {z ∈ C | |z| < 1}, and C+ denote the right half-plane {s ∈ C | Re(s) ≥ 0}. (1) Let W (D) be the Wiener algebra of the disc, that is the set of all absolutely convergent Taylor series in the open unit disk D, with pointwise operations. (2) Let W (C+) be the set of all functions defined in the right halfplane C+ that differ from the Laplace transform of a function ...

متن کامل

Discrete Concavity for Potential Games

This paper proposes a discrete analogue of concavity appropriate for potential games with discrete strategy sets. It guarantees that every Nash equilibrium maximizes a potential function. JEL classification: C72.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Discrete Mathematics

سال: 2010

ISSN: 0895-4801,1095-7146

DOI: 10.1137/090758738